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ABSTRACT

A theory due to Eddington is employed to calculate second-order corrections to the usual linear,
quasi-adiabatic pulsational amplitudes. Such corrections are necessary in order to evaluate the pulsa-
tional stability of stars in thermal imbalance (dS,/d¢ » 0). The second-order quantities are calculated,
and their properties discussed, for a wide variety of polytropic models. Subsequently, a number of these
models are tested for pulsational stability, and the conclusions drawn in an earlier, more preliminary
work are re-evaluated on the basis of the results. In particular, it is found that stars in pre-main-sequence
contraction are probably stable against pulsations energized via thermal imbalance.

I. INTRODUCTION

In the linear, quasi-adiabatic theory of stellar pulsations, the pulsational stability of a
system is evaluated by means of an integral whose terms are of second order. For con-
venience, these terms may be divided into two categories: (1) terms independent of the
secular rate of change of the equilibrium entropy

5 _ 1 (, ok
i~ T\* " om

and (2) terms proportional to d.S,/dt.
Following an earlier paper (Simon 1970, hereafter called Paper I), we shall write the

stability integral, in the absence of sources or sinks of subatomic energy (i.e., for e = 0),
in the form

Lp

: ;) 1 of
7 =~ @ = DaL 5 GL)dg + J(Ts = 1) 5. (p.)dg

- P 6U_6_]_’ 27, _ a_f op
S 773507 5 0l — 2./ (T 1>aq<p>dq, (1)

where p, indicates the relative first-order (harmonic) perturbation of the equilibrium
density, and {§p/p) a time average (over the pulsation period) of the total density per-
turbation, including terms up to second order. (Exactly what we mean here by first- and
second-order terms, and how they are obtained, will be discussed in detail in the next
section.) In addition, we have defined ¢ = m/M, f = L,/L, while the rest of the notation
conforms to that of Paper I.

For further convenience we rewrite equation (1) in a shorthand form:

Lp/L =1+ I+ J: + K», (2)

where the integrals, including signs, are labeled in order.
The term I; (“ordinary” term) is independent of dSo/dt, and is the term usually
treated in the linear, quasi-adiabatic analysis. On the other hand, the terms with sub-
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script 2 (‘“‘thermal-imbalance” terms) vanish during epochs of equilibrium nuclear
burning in stars (i.e., when dSy/dt =~ 0), and, hence, have generally been ignored.

In Paper I, I, and J, were calculated for a few simple stellar interiors. It was shown
there that, for luminosity increasing outward, these terms nearly always tend to energize
pulsations, but are small compared with the “ordinary” damping /. For luminosity
decreasing outward, I and J; produce damping. In the final section of Paper I, the sug-
gestion was made that I, and J, might approach or exceed I in two specific cases—
namely, thermally unstable shell-burning stars, and stars in pre-main-sequence con-
traction.

In the event that contributions due to thermal imbalance do become important, it is
obvious that the term K, must also be studied in detail. This requires a second-order
theory. In what follows, we propose to calculate second-order pulsational amplitudes
according to a simple method originally due to Eddington. We shall apply this method to
a wide range of polytropic models, calculating the second-order quantities, using them to
evaluate K, and, where possible, comparing the latter in size with the other terms of
equation (2). In the final section of this work, some conclusions drawn in Paper I will
be reevaluated in light of the second-order calculations.

II. THE SECOND-ORDER THEORY

The method we shall use to calculate second-order quantities is given in Rosseland
(1949).
We begin with the adiabatic equation of motion

dr a\2
ae 0a2 aa <r2r) — & (7) ’ @)

where the subscript zero indicates equilibrium quantities; @ = 7o; go = Gm/a?; and the
prime denotes differentiation with respect to a.

Using
r=a(l + ) 4
in equation (3), and neglecting all powers of n and its derivatives higher than the second,
we obtain (for da/dt = d“’a/dt2 = (), and v = const.)
dt2 T (1~ 29) = L(n) — Q) (5)

where L(n) contains the first-order terms and Q(») the second-order terms. Both func-
tions are given in Rosseland (1949, chapter 7).
The equation for the first-order radius amplitude is just

d*n
L(y) = Pod s

and has the harmonic solution
7 = %, COS ol.

We now seek a solution to the second-order equation (5) of the form
n = x, cos of + w, cos 2q¢ + u, , (6)

where w, and #, are of second order.
Inserting equation (6) into equation (5), again neglecting terms higher than second
order, and equating coefficients of linearly independent Fourier terms, we finally obtain

(Rosseland 1949)
4p00,0'2'w* + L('w*) = 9000'295*2 + %Q(x*) ’ (7)
L(u,) = poac’s? + $Q(x,) . ()
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The amplitude w, represents the anharmonic correction to the pulsation introduced by
the second-order terms. It was studied by Eddington (1919) and Kluyver (1935), who
treated equation (7) for the standard model in attempts to reproduce the radial-velocity
curves of Cepheid variables.

The quantity «,, on the other hand, gives the average displacement of the center of
pulsation over a period. Since it is this term that contributes to the integral K,, we shall
be interested here in equation (8).

To see how this works out, let us write the equation of continuity in the form

_ pod?
T

Inserting equation (4), we obtain to second order

%@ = %’3 = —(3n + a1) + 69* + o™ + dam’ ;

and using equation (6),
6—5 = —(3x, + ax’,) cos of + [3x2 + 1a%(x’,)? + 2ax,4', — 3w, — aw',] cos 20t

+ 3% + $0°(x")? + 2024/, — 3u, — au' )],
where the coefhicient of cos ot is just the first-order density perturbation
p. = —(3x, + ax’,) .
We then have for the total time-averaged density perturbation

§£> = 3x*2 + %a2(xl*)2 + 2ax*x,* - Su* - a‘u’,* ’ (9)

where the terms involving cos ¢f and cos 2¢¢ vanish in the integration over the period
= 27/o.
The integral K, then becomes

1
K= —2/(T5 — 1) % [30.2 + 3a2(x'.)? + 2ax.4, — 3u, — au'.)dq .
(1]

III. THE SECOND-ORDER DISPLACEMENTS

We begin this section by writing out equation (8) in terms of the Emden variables,
x and y (British Association for the Advancement of Science 1932):

w", + [Q»_{r_ﬁ_y n ‘_;]u L+ DBy =9y

*

y yxy
__+1) [wzxy,sur g2 LSYGy + 1) — 10l ,
xy Vdsur 2y ’

- 3y +2 Dxy’ v, — (v +41)x23’l (x'*)z]

+ Z(ﬂf—l) za'y + v + DEDP A+ 370Gy + Da, + (v + Dae' )] (10)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971ApJ...164..331S&amp;db_key=AST

T T 11647 133150

120

1197

334 NORMAN R. SIMON

Here, 7 is the polytropic index, w? = ¢?R3%/GM the usual dimensionless angular fre-
quency, the subscript “‘sur” indicates the stellar surface, and the primes denote differen-
tiation with respect to the radial-extension variable .

Equation (10) turns out to be a familiar type of stellar equation, whose solution cor-
responds, in this case, to a unique startmg value %, | sur at the surface of the model. Once
the first-order solution is known (i.e., w?, x,, and its derivatives), trial integrations may
be made in the usual way from center out and from surface in (see, e.g., Ezer and Cam-
eron 1963) until a fit is obtained. To begin these integrations, we require starting expan-
sions at both surface and center.

The fitting variables we used were the most obvious ones, #, and #’,, and these turned
out to be also the most convenient. In this manner, equation (10) was integrated for a
wide variety of models with different indices #» and various first-order modes, including a
number of overtones. Strictly speaking, equation (10) is valid for an ideal gas, but not for
a gas in which radiation pressure is taken into account. However, it can easily be shown
that the error incurred by applying this equation while including radiation pressure is

of the order of the ratio
ad 11’1 Pl
gl @,

a quantity which is less than 4 percent over the whole range £ < I'y < £. With this in
mind, we have calculated a number of (» = 3) polytropes Wlth radlatlon pressure in-
cluded.

Results of the calculations are given for selected models in Table 1, where, for the
ratio B of gas pressure to total pressure and for the harmonic overtone under considera-
tion, the rows represent in descending order the dimensionless angular frequency of the
ﬁrst order (harmonic) mode, the surface and central values of «,, the central value of x,,
the time-averaged total density perturbation (9), and the square of the first- order
density perturbation p,. Since all terms in equation (10) will scale as the square of the
first-order amplitude x*, all of the pulsational amplitudes in Table 1 have been normalized
by the choice x, | s = 1.0.

One sees 1mmed1ate1y from this table that the second-order corrections #, are always
positive at the surface of the model. Furthermore, the values of u,| e increase mono-
tonically with increasing w?, without specific reference to any of the physical properties
which determine w?, such as the polytropic index, the amount of radiation pressure, or the
overtone being considered. This quality is illustrated in Figure 1 in a plot of #, | sur versus
w? for most of the models given in Table 1. The relationship that emerges is very nearly
linear and is presented here for possible future use in guessing the starting values #, | sur
for models more complex than the polytropes we have treated.

L ) L | 1 1

0 8 16 24 32 40

Fic, 1.—Displacement at the surface #, | sur versus w? for models of Table 1
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As one moves in from the surface of the model, the second-order corrections #, fall
off in a manner qualitatively similar to that of the first-order amplitudes «,, but at a
considerably faster rate. Figure 2 shows the runs of #, and «, in the model » = 1.5 for
both the fundamental mode and the first overtone. The curves for this polytrope are
typical of all those calculated, with the drop-off rates of both %, and x, showing the
familiar increase with increasing central condensation of the models (i.e., with increasing
). It may be noticed from Figure 2 that the correction #, to the first overtone (curve 2q)
has two nodes—exactly double that of the first-order amplitude x, (curve 1la). This
doubling of the number of nodes turned out to be a general characteristic in the models
treated, except that in some cases an additional node appeared toward the center in a
region of extremely small amplitude. This is illustrated in Table 1, where one notices,
for example, that %, |en < O for the fundamental mode of the model # = 3, 8 = 0.9. In
order to ascertain whether that particular node was real, we tried to make it disappear
by means of numerical techniques such as improving the eigenvalues, changing the inte-
gration step-size, etc. Since the node always remained, we conclude that it is probably
real. In any case, the corrections #, are so small in the regions in question that the pulsa-
tion can hardly be affected either way.

We will close this section by pointing out some interesting additional information that
can be obtained from Table 1. The second-order theory we have used is an extremely
simple one, unable to treat either amplitude-dependent effects or the coupling of pulsa-
tional modes. However, since in the derivation of equation (3), terms of the order x,3
and u,x, were ignored compared with «,2, it follows that x, and #,/x, must be small com-
pared with unity for the theory to be valid. At the same time this is also the criterion for
the validity of the linear theory, in which «,% and #, are discarded in comparison with x,.

Suppose we scale the entries in Table 1 to fit a first-order surface amplitude #, = 0.1,

Xy OFr U,

0.0 0.2 0.4 0.6 0.8 1.0

F16. 2.—Runs of #, and x, for the polytrope n = 1.5, Fundamental mode: x, (curve 1), u, (curve 2).
First overtone: x, (curve 1a), #, (curve 2a). Abscissa represents the normalized radius.
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and consider as an example the fundamental and first two overtones of the model » = 3,
B = 0.9. Then one sees from the table that the surface ratios (#,/x,) s for these cases are,
respectively, 0.12, 0.27, and 0.52. It can be concluded from this that, for a first-order
surface amplitude of 10 percent, the linear theory suffices for the fundamental and per-
haps the first overtone, but certainly not for the second overtone. Since (%,/x,)sur is @
monotonically increasing function of w? (Fig. 1), it follows from this example that the
larger w? the smaller the amplitude at which the linear analysis fails and higher-order
effects must be taken into account. Thus we see that the second-order theory of Edding-
ton, unsuitable for treating amplitude dependence is nonetheless able to provide a rough
upper bound on the region where the linear theory will be valid.

IV. THE STABILITY INTEGRAL
a) The Density Perturbation

The total time-averaged density perturbation (8p/p) is given by equation (9). One can
see that it contains two kinds of terms—namely, those involving the second- order cor-
rections #,, and those involving x,2. As Figure 2 illustrates, the quantities », and %, are
both positive in the large—amplitude regions that determine the stability integrals. This
corresponds to the fact that, on the average over a period, the center of pulsation of a
given particle is displaced toward longer radii (see eq. [6]), a circumstance which tends to
reduce the average density. On the other hand, the terms in equation (9) which involve
x,2 tend to increase the density, and it is this competition which finally determines the
sign of (8p/p).

Table 1 lists the surface values of (8p/p) for the calculated models. One notices the
general trend from positive to negative values with increasing w? reflecting the increasing
size of #, compared with x,2 as w? gets larger. Also listed for comparison are the squares of
the first-order density perturbations p,?| sur.

Let us return for a moment to equation (1). Suppose that the luminosity is increasing
outward (3f/dg > 0), and consider the sign of the last integral, i.e., K». This sign will be
opposite to the preponderant sign of (8p/p) over the integration. Let us state here that,
for all the cases calculated, (8p/p) Was always preponderantly positive (even when its
surface value was negative), and thus K, was always negative (i.e., a damping term) for
luminosity increasing outward. For luminosity decreasing outward, K; would of course
produce energizing.

b) The Polytrope n = 3

Actual evaluation of the stability integral requires that the luminosity distribution
f(q) be known. For the standard model (# = 3), we have chosen the distribution f = g as
a physically reasonable case (Paper I; Deinzer and Hansen 1969). Table 2 gives the
various terms in the stability integral for a number of models selected from Table 1. The

TABLE 2
VALUES OF THE STABILITY INTEGRALS

n=1.5 n=3

VARIABLE 8=1.0 =10 8=0.999 8=0.900 B=0.500 8=0.100
Wl 2.7 12.5 9.22 7.08 3.33 0.663
Iyoooo il —12.6 ~84.35 —51.7 —22.2 —4.57 —0.68
) £ 2.25 0.28 0.07 0.08 0.21 0.72
Jao oo, 0.56 0.07 0.02 0.05 0.19 0.70
Koo ool — 1.88 - 0.25 — 0.05 — 0.08 —~0.36 —1.40
Le/L.......... —-11.7 —84.4 —51.6 —22.1 —4.53 —0.66
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»n = 3 models differ in radiation pressure, encompassing the wide range 0.999 < 8 < 0.1.

Since the terms [y, I5, and J, were discussed in detail in Paper I, our interest here shall
be in the final term K. As indicated above, K, is a damping term. It has a magnitude
approximately equal to those of the energizing terms I» and J; and thus tends to offset
them. The “thermal-imbalance” terms are always much smaller than the “ordinary”
damping Iy, except in the case of overwhelming radiation pressure (8. = 0.1), where K,
actually gives the largest contribution and /; the smallest. Even in this case, however,
the pulsation is damped, though by a relatively small margin.

¢) The Polytrope n = 1.5

We choose here the luminosity distribution corresponding to a star in homologous
contraction. In that case, with ¥ = £, we have, in Emden variables,

of _ 7
dx B sxssur(y,aur)z

Table 2 lists the terms in the stability integral for the fundamental mode and the first
overtone. Once more, the “ordinary’” damping I, calculated here as if the star were
wholly radiative, completely dominates, whereas the terms due to thermal imbalance
tend to cancel.

It is well known that the model discussed here is a reasonable approximation to the
fully convective phase of pre-main-sequence contraction. In fact, this polytrope was
used by Okamoto (1967) to discuss the pulsational stability of stars in such a phase.
With the aid of a method due to Unno (1967), Okamoto recalculated the damping I,
taking into account the coupling between convection and radial pulsation. His results,
which are mass dependent, show that the damping is considerably weaker, as compared
with the radiative case, especially at low masses. Table 3 briefly reproduces these results.

With the damping thus substantially lowered, Okamoto explored the possibility that
energizing due to thermal imbalance might be enough to excite pulsations in such models.
He evaluated the integral I, in a quite direct manner, and then used an approximate
scheme given by Kato and Unno (1967) in order to calculate the sum (J; + K,). This
scheme sought, via approximations, to avoid calculation of the second-order displace-
ments %,. '

The results of Okamoto (1967) are compared with those of the present work in Table 4.
It can be seen that the values of I, agree reasonably well, the difference being due to the
rather rough first-order solutions (Lucas 1956) employed by Okamoto. On the other
hand, when one compares values of the sum (J; + Kj), it becomes evident that a serious
discrepancy exists, with the two results not even agreeing in sign. In view of the straight-
forward nature of the present work, it would appear that this discrepancy should be at-
tributed to the inadequacy of the above-noted approximation of Kato and Unno
(1967); and, indeed, a careful examination of the latter work serves to confirm this. The
last line of Table 4 gives the total contribution of the “thermal-imbalance” terms. In
both cases, this contribution turns out to be positive (i.e., energizing), but with a signifi-
cant difference in magnitude. '

A2q25

TABLE 3

“ORDINARY” DAMPING GIVEN BY OKAMOTO (1967)
FOR THE POLYTROPE # = 1.5

M/Mg 0.4 0.6 1.0 2.0

... —1.16 —1.20 -1.79 —6.12
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TABLE 4

COMPARISON OF “THERMAL IMBALANCE” TERMS
FOR THE POLYTROPE # = 1.5

Variable Okamoto (1967) Present work
Il oo . 2.15 2.25
Jo. O 0.56
Koo . Ca —1.88
(7% € P 1.66 —1.32
L+Jo+Ke. oL 3.81 0.93

Thus, when one compares the damping (i.e., I;; see Table 3) with the energizing (last
line of Table 4), it is seen that, if one uses Okamoto’s value for the latter, pulsations will
be excited in masses less than 1-2 M,; on the other hand, if one uses the value of the
energizing given in the present work, all of the masses in Table 3 are found to be stable.
We must conclude that the assertion of Okamoto, that stars with masses less than 1-2 M,
in pre-main-sequence contraction become pulsationally unstable, cannot be maintained,
at least on the basis of the polytropic model.

It should be noted, however, that the margin of stability here is rather small, es-
pecially at the lower masses. Coupled with this is the fact that the polytropic representa-
tion of pre-main-sequence contraction is certainly oversimplified. In particular, this
representation ignores the undoubted existence of ionization zones, whose presence might
have an important enhancing effect on the energizing integral J» (Paper I). On the other
hand, the pulsation-convection theory of Unno ( 1967) i is rather generous in reducing
the “ordmary” damping [; from its radiative value, and, in view of the primitive state of
our knowledge of convection, can hardly be considered certain. In summary, it seems
fair to say that, although the possibility of energizing pulsations in pre-main-sequence
stars via thermal imbalance now appears somewhat improbable, the question nonetheless
remains open.

V. DISCUSSION

In Paper I, a number of tentative conclusions were drawn regarding the influence of
thermal imbalance on pulsational stability. This work was based on a stability integral
that was incomplete due to omission of the term K. With that omission rectified in the
present investigation, we may now assert the following:

1. For stars crossing the H-R diagram in post-main-sequence evolution and for de--
generate stars cooling via photon emission, the “thermal-imbalance’” terms are very
small compared with “ordinary” damping terms and can thus be ignored.

2. Stars in pre-main-sequence contraction probably do not become pulsationally
unstable as suggested by Okamoto (1967), but the question can be settled definitely only
by detailed models (including ionization zones), and is subject to the uncertainties in-
herent in present theories of convection.

3. The pulsational stability of thermally unstable shell-burning stars (Rose 1967,
1968) depends critically on effects due to thermal imbalance. The luminosity dlstnbutlon
above the shell in these stars (luminosity decreasing outward) is such that I; and J,
produce damping, while K, is an energizing term.

Finally, we note that all of the above conclusions are, of course, subject to quantita-
tive correction, depending upon the accuracy of the various approximate schemes we
have employed In particular, we emphasize that nonadiabatic effects have not been

taken into account, and that the results obtained here can only be as good as the quasi-
adiabatic approx1matlon allows.
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